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Abstract: Joint replacement surgeries are one of the most frequent medical interventions globally.
Infections of prosthetic joints are a major health challenge and typically require prolonged or even
indefinite antibiotic treatment. As multidrug-resistant pathogens continue to rise globally, novel
diagnostics are critical to ensure appropriate treatment and help with prosthetic joint infections (PJI)
management. To this end, recent studies have shown the potential of molecular methods such as
next-generation sequencing to complement established phenotypic, culture-based methods. Together
with advanced bioinformatics approaches, next-generation sequencing can provide comprehensive
information on pathogen identity as well as antimicrobial susceptibility, potentially enabling rapid
diagnosis and targeted therapy of PJIs. In this review, we summarize current developments in next
generation sequencing based predictive antibiotic susceptibility testing and discuss potential and
limitations for common PJI pathogens.

Keywords: NGS; antibiotic susceptibility testing; machine learning; periprosthetic joint infection

1. Introduction

The number of prosthetic joints implanted increases as people live longer and have
greater aspirations for maintaining mobility [1]. In Germany alone, the number of, for
example, total knee arthroplasties (TKA) is projected to rise from around 170,000 in 2018 to
225,000 in 2050. This 43% increase is accompanied by an 88% increase in revision TKAs
mainly related to periprosthetic joint infections (PJIs) [2]. In general, PJIs occur in 1–4.6%
of primary and revision arthroplasties [3,4]. Depending on pathogen virulence, PJI can
manifest within the first weeks after prosthetic joint implantation or even months or years
later. Treatment of PJIs usually entails prosthesis explantation, thorough debridement
of the affected joint cavity tissue, and prosthesis replacement [5]. Following prosthesis
replacement surgery, a multi-week antibiotic treatment regimen is applied to eradicate
infectious pathogens. The surgical intervention and accompanying antibiotic treatment
strategy depend primarily on pathogen identity and antimicrobial susceptibility status [6].
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Fast and highly accurate microbial diagnostic methods, including species identification and
antibiotic susceptibility testing (AST), are thus essential for achieving optimal patient outcomes.

With the evolution and increased accessibility of next-generation sequencing (NGS),
infectious disease testing using NGS-based methods is becoming a viable option in clinical
settings for a variety of applications [7,8]. NGS enables accurate species identification, the
detection of genes related to antibiotic resistance, and the use of predictive, genome-derived
AST. Moreover, when routinely available, NGS-based surveillance can contribute to the
prevention of antimicrobial resistance [9,10]. The value of NGS methods in general has
recently been recognized by the World Health Organization, who has recommended the
adoption of NGS for infectious disease testing [11].

In this review, we discuss current approaches towards NGS based predictive AST,
exemplified on common PJI pathogens, and the potential and limitations of sequencing-
based methods for the management of PJIs.

2. Standard of Care Diagnostic Methods for PJI Management

Symptoms of PJI are often unspecific and potentially hard to distinguish from aseptic
prosthesis failure [6]. Clinical diagnostic criteria and imaging methods designed to detect
prosthesis loosening are non-invasive but are either associated with high intervention
cost or have been found to show insufficient diagnostic sensitivity or specificity [5]. Joint
aspiration of synovial fluid and subsequent microbiological and histopathological analysis
is seen as the most valuable preoperative diagnostic method [6]. Pathogen identification is
usually obtained using MALDI-TOF, which is limited by the databases available and might
not identify some pathogens down to the species level [12].

Resistance status is typically determined via AST by microbiology culture using
broth microdilution or disk diffusion, which are considered the standard reference meth-
ods [13]. Both methods can be automated in routine use and the obtained quantitative data
interpreted using standardized guidelines, for example, published by the Clinical and Lab-
oratory Standards Institute (CLSI) or European Committee on Antimicrobial Susceptibility
Testing (EUCAST). Both methods, however, are inherently limited by their dependence on
bacterial culture. The time-to-result for slow-growing pathogens may be days to weeks
and the fraction of PJI cases attributable to non-culturable agents (culture-negative PJI,
or CN-PJI) was found to be between 5% and 42% depending on the study [5,14]. In the
absence of relevant information on pathogen identity, for example, CN-PJI is treated using
broad-spectrum antimicrobials [5].

To help with the situation, PCR-based methods targeting known antimicrobial resis-
tance (AMR) marker genes are increasingly used in diagnostic settings. While limited in
their applicability by the number of resistance-related genes targeted by the PCR panel,
performance for well-defined use cases has been encouraging. PCR-based techniques are
independent from bacterial culture and operate directly on patient samples, decreasing
turn-around times to a few hours [15,16]. Lausmann et al. (2020) tested the Unyvero
ITI® PCR cartridge on 97 patients with aseptic or septic, hip or knee revision surgery, and
obtained an overall accuracy of 91.8% [17]. BioFire® Bone and Joint Infection was evaluated
by Graue et al. on 1544 patient samples and the obtained overall sensitivity was 90.2%
and specificity was 99.8% [18]. Recently, MicroGenDX announced OrthoKEY®, that uses a
combined approach of PCR and sequencing for infection diagnosis and management for
periprosthetic joint infection [19].

3. Next-Generation Sequencing—Diagnostic Opportunities in PJI

With the falling cost of genome sequencing, NGS-based diagnostics are becoming
attractive, that may be able to address limitations of current AST and PCR techniques [7].
Species identification by NGS has been reported to have similar or higher accuracy than the
reference method MALDI-TOF and can be adapted to novel pathogen species [20–22]. NGS
further enables in-depth strain typing and antimicrobial resistance surveillance. Species and
strain information can narrow down viable treatment options, with the latter being a highly
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accurate predictor of antimicrobial resistance status in some pathogens, e.g., Streptococcus
pneumoniae [23,24]. In contrast to PCR-based methods, NGS reveals information about a
sample’s complete set of genetic regulatory and functional capabilities. An example of
NGS usage in PJIs is reported by Ivy et al. (2018), where metagenomic shotgun sequencing
was used for species identification and obtained 90% accordance to the species identified
by culture in addition to identification of additional species not recovered by culture [25].

To shorten turn-around-time by circumventing microbial culture, NGS-based iden-
tification and predictive AST (pAST) might also be performed directly on native patient
material. While direct sequencing of native patient samples may suffer from high human
background compared to isolated microbial DNA, enrichment methods prior to sequencing
(or computational methods after sequencing) can reduce the host background. A capture
enrichment panel, for example, includes a selection of probes that target sequences such as
AMR markers and the library size can be several orders of magnitude higher compared to
PCR panels, allowing for more information to be captured, e.g., for pAST [26,27]. Enrich-
ment panels can be of particular interest for slow-growing organisms or CN-PJIs and can
be expanded to allow for species identification and detection of virulence factors as needed.

Of note, with recent technologies such as the Oxford Nanopore Technology (ONT)
platform, that sequence single DNA or RNA molecules with minimal sample preparation,
additional approaches to target enrichment and direct sequencing are becoming available.
ONT also allows for live result streaming for analysis and depending on the sequencer
being used, only requires little bench space. Identification and predictive AST by ONT
sequencing may further reduce turn-around-time [24]. Different methods and approaches
that can be considered for PJI species identification and (predictive) AST are summarized
in Figure 1.
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gram includes standard of care as well as novel methods and lists approximate times needed to
obtain diagnosis.

4. Predictive Antimicrobial Susceptibility Testing

Several approaches exist for the prediction of antimicrobial susceptibility profiles from
genomic data. We find that it is useful to group methods by (a) their decision algorithm and
(b) their internal representation of NGS data. In this section we motivate these distinctions
and introduce several key concepts of pAST as well as machine learning (ML).

4.1. Method Grouping by Decision Algorithm

Firstly, computational methods for pAST differ fundamentally by how resistance is
determined, separating methods into rule-based or model-based. For rule-based methods,
a set of rules derived by expert curation is applied to each sample, ultimately yielding
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the predicted resistance status. Commonly used rules pertain to the presence or absence
of validated AMR resistance markers [28,29]. For example, identification of the vanHAX
resistance cassette in an enterococcal isolate may cause calling of vancomycin resistance
by a rule-based method, due to the known mechanistic link of the gene products with
resistance [28].

With model-based methods, a ML model is trained on a set of samples with known
resistance status to learn correlations between numerical representations of the training data
and resistance status. When the trained model is then applied to samples with unknown
resistance status, it returns a prediction according to the correlations learned on the training
sample set. As such, an ML model trained on a training set of enterococcal isolates may
report high confidence of vancomycin resistance to a sample encoding the vanA gene,
due to the strong association of the gene with vancomycin resistance in the training set
samples. Many ML algorithms have been devised, each differing in their internal strategy
for optimizing prediction accuracy [30]. Several different ML algorithms have been applied
to the task of predicting AST results. Common choices include ensemble methods such
as XGBoost and AdaBoost, which seek to optimally combine multiple models to achieve
the best performance [31,32]. Other techniques such as Support Vector Machines and Set
Covering Machines attempt to find the most valuable separation criterion of samples based
on the data in a single model [31,33].

Both rule-based and model-based pAST methods must be validated to ensure predic-
tion accuracy. This is achieved by applying the method to test datasets not involved in
method development and scoring predictions against reference AST measurements. ML
methods are also commonly validated by splitting a single dataset into the training and
test dataset, either once or repeatedly in a cross-validation scheme [30]. Clinical guidelines
are used to map the quantitative output of laboratory AST assays to interpretive categories
such as Resistant, Intermediate and Susceptible [34]. While most pAST methods attempt to
predict interpretive categories directly, some attempt prediction of the underlying mini-
mum inhibitory concentration (MIC), which gives insight into the strength of resistance [35].
The FDA guidance document for the performance of diagnostic AST devices can serve as
a benchmark to assess performance of pAST methods. Suggested performance metrics
detailed by this document are 90% categorical agreement (CA) on the interpretive category
as well as at most 3% Major Error (ME) and 1.5% Very Major Error (VME), i.e., the fraction
of susceptible isolates predicted as resistant and vice versa [36]. As most pAST methods
predict only Resistant and Susceptible but not the Intermediate interpretive category, bi-
nary classification metrics such as accuracy, sensitivity and specificity are often provided
which facilitate comparison of performance across methods. Several pAST methods do not
operate on clinical interpretive categories, but on epidemiological cut-off values (ECOFFs)
instead which can be defined even for pathogen/compound combinations for which no
clinical guidelines are available [28,37,38]. Such methods predict wild-type/non-wild-
type status of samples for a given antibiotic compound instead and likewise yield binary
classification metrics.

4.2. Method Grouping by Internal Representation of NGS Data

A second useful distinction between pAST methods is the way the input data is
structured for prediction, grouping methods into gene- and sequence-centric ones. Gene-
centric methods use bioinformatics tools to annotate features like protein coding sequences,
rRNA and ncRNA sequences, as well as other relevant genomic aspects in the input NGS
data. In the most straight-forward case, the set of features may be restricted to established
AMR marker genes or single nucleotide polymorphisms (SNPs) known to cause resistance
to the compound in question. Several databases such as CARD or ResFinder curate AMR
marker information and several bioinformatics tools can detect known AMR markers
with high sensitivity [39,40]. The reader is referred to Anjum et al. (2017) for an in-depth
review [41]. Prediction of resistance profiles is then computed from this preprocessed
information using either a rule-based or model-based approach.
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Conversely, sequence-centric methods utilize NGS data to make predictions without
prior annotation of defined biological entities like genes and intergenic regions. Instead,
input NGS data is commonly represented as the presence, absence, or abundance of so-
called k-mers (DNA sequences with k base pairs) [42]. This representation does not require
biological expert knowledge, and the resulting list of occurrence counts for each DNA k-
mer in each sample is not easily interpretable. Thus, sequence-centric methods are usually
model-based as well. By using sequence data directly, the ML model can learn the resistance
status for antibiotic compounds with complex or poorly characterized mechanisms of
action. Trained models can also aid in the elucidation of novel resistance mechanisms, e.g.,
k-mers identified as discriminators of antibiotic resistance might be mapped to known (or
possibly novel) AMR marker genes and resistance-causing SNPs [35,43,44]. Importantly,
sequence-centric methods also facilitate prediction from short reads directly without the
need for de novo genome assembly or mapping to a reference genome and are therefore
computationally efficient [28].

5. Advances in Predictive AST for Common PJI Pathogens

In general, pAST methods must be tailored to and evaluated on a taxon- and compound-
specific basis [45]. For rule-based techniques, this entails selecting an appropriate panel
of AMR markers with published relation to the resistance phenotype in question. For
ML-based methods, this is achieved by training a model on a sufficiently large and diverse
dataset of NGS data coupled with reference AST information. Depending on the complexity
of the resistance phenotype and the taxon in question, thousands of sequenced isolates
may be required to achieve optimal performance [46]. As bacterial isolate sequencing is not
yet standard clinical practice, these requirements are satisfied only for a subset of bacterial
taxa and antibiotic compounds. In this section we summarize current developments in
the field of pAST with a focus on pathogens and antimicrobial compounds relevant to PJI
diagnostics (Table 1).

5.1. Staphylococcus aureus and Staphylococcus spp.

Staphylococcus aureus is the leading causative agent of PJI [5]. It can efficiently colonize
medical implants, forming a biofilm layer, and is implicated both in acute and chronic PJI.
Antibiotic treatment options in the context of PJI include initial suppressive therapy after
debridement with flucloxacillin or vancomycin (depending on methicillin resistance status)
and prolonged combination therapy with the biofilm-active compound rifampin as well as
fluoroquinolones or sulfonamides [6].

S. aureus is a promising target for predictive AST applications. As a high-impact
human pathogen responsible for a range of diseases, S. aureus pathogenicity is well-studied
and many NGS datasets relating to it are published, benefitting the development of pAST
techniques [29]. The small genome of 2.8 Mbp contributes to a greater ease of classifica-
tion [47]. S. aureus can acquire resistance mechanisms through horizontal gene transfer
(HGT), leading to the emergence of highly virulent and resistant strains [48]. Nevertheless,
the mere presence of canonical AMR genes is a strong determinant of resistance, with
regulatory mechanisms playing a diminished role.

The relative ease of in-silico prediction of antimicrobial resistance for S. aureus has been
demonstrated by multiple publications. In a sequence of landmark papers, Gordon et al.
(2014) and Bradley et al. (2015) investigated prediction of resistance from NGS data using a
curated panel of plasmid-borne resistance markers and SNPs associated with AMR [29,49].
Resistance was called if markers or SNPs associated with an antimicrobial compound were
identified in assembled genomes using local sequence alignment [50]. Bradley et al. (2015)
introduced the Mykrobe tool which extends this approach to raw NGS read data. Applied
to an independent validation dataset, Mykrobe exhibited sensitivity and specificity of 99.1
and 99.6%, respectively, averaged over 12 antibiotic compounds (see Table 1) [29]. Davis
et al. (2016) report the use of a sequence-centric ML approach that has been implemented in
the automatic genome analysis pipeline of the PATRIC database [43]. Taken together, these
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and other studies found concordance between predicted and AST-derived susceptibility
status consistently exceeding 90% [28,51].

The second major group of staphylococci known to cause PJI are coagulase-negative
staphylococci (CoNS). This diverse group of human commensals and opportunistic pathogens
is commonly encountered both in early-onset and late-onset PJI. Significantly less is known
about virulence mechanisms and epidemiology of CoNS as compared to S. aureus, and
few datasets suitable for machine learning are available [52]. This limits the development
of both gene- and sequence-based pAST approaches. CoNS species have thus not been
investigated in depth in this context. Bradley et al. (2015) report the power to discriminate
S. aureus from CoNS species, but do not expand upon resistance prediction in the latter [29].
As resistance mechanisms are exchanged between CoNS and S. aureus, marker-based pAST
methods developed for S. aureus may exhibit some level of predictiveness for CoNS [53].
CoNS have been described as the origin and reservoir of a wide array of antimicrobial resis-
tance genes for the genus Staphylococcus, and broad multi-resistance as well as resistance to
second line of defense drugs such as vancomycin is common in CoNS infections [54]. This
shift in resistance in conjunction with the dichotomy of commensalism and pathogenicity
observed in CoNS may impair predictive performance. Further research focusing on pAST
for CoNS pathogens is needed

5.2. Enterobacterales and Non-Fermentative Gram-Negative Bacteria

Another significant group of human pathogens in the context of PJI is Gram-negative
bacilli. Commonly identified causative agents include Escherichia coli, Klebsiella spp. and
Enterobacter spp. as well as Pseudomonas spp. [55,56]. Ciprofloxacin is the foundation of
antibiotic treatment for all susceptible Gram-negative PJI cases, with resistant cases posing
a significant complication [55,57].

Despite functional similarities in resistance mechanisms, predictive performance
varies substantially with pathogen species, antibiotic class and, in the case of ML-based
methods, with the number of training samples. Early work by Stoesser et al. (2013) used
rule-based classification by sequence alignment of assemblies to published AMR markers,
followed by manual expert curation of hits to classify a small set of E. coli and Klebsiella
pneumoniae isolates. This proof-of-concept study affirmed the possibility of NGS-based
AST for Gram-negative bacteria, reporting excellent performance with 96% sensitivity and
specificity in both species [58]. Subsequent studies investigated similar marker-gene-centric
pAST techniques [59,60]. Recently, due to the availability of large NGS datasets suitable for
machine learning, attention has shifted from gene-centric approaches towards sequence-
centric approaches. In an extensive study of 1668 K. pneumoniae isolates collected from a
Houston hospital system, Nguyen et al. (2018) trained gradient boosting tree ML models on
DNA 10-mer representations of assembled genomes [35]. This method utilized co-resistance
patterns of different antibiotic compounds to improve the final model performance but did
not rely on any biological annotation of marker genes. Despite this, the authors reported
concordance with resistance calls made by a phenotypic AST testing device, reaching on
average 4% VME and 7% ME (see Table 1) [35]. Similarly high performance was reported
by multiple other studies employing sequence-centric ML methods [44,51].

Pseudomonas aeruginosa is a special case among Gram-negative pathogens in the con-
text of pAST. It is difficult to make accurate AMR predictions for relevant antibiotic com-
pounds in this pathogen, with reported sensitivity and/or specificity metrics of around
80% for many compounds (see Table 1) [51,61]. This may be attributed to the compara-
tively low number of training instances available in the public domain, and to the intricate
network of regulatory mechanisms governing the P. aeruginosa response to its environ-
ment [62]. The mutation rate of the organism, especially in hypermutator strains known to
escape antibiotic treatment, further increases the genomic diversity of the species. Thus,
predictive performance falls short of what is observed in species from the order Enterobac-
terales [51,61,63].
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Table 1. Selected pAST methods targeting organisms relevant to PJI.

Organism
Group Organism Input Data Type Decision

Algorithm Type
Data Input to Decision

Algorithm
Decision

Algorithm Validation Strategy Validation
Dataset Sizes

Accuracy on
Validation Datasets [#

Compounds]
Year Ref.

St
ap

hy
lo

co
cc

i

S. aureus

Gene Rule AMR markers in reads or
assemblies ResFinder DB lookup Multiple independent

validation datasets ~80 96% and 97% [8] 2020 [28]

Gene Rule AMR markers in reads or
assemblies

Custom AMR DB
lookup

Independent
validation dataset 470 (Sensitivity/specificity of

99.1%/99.6%) [12] 2015 [29]

Sequence ML DNA k-mer counts from
assemblies AdaBoost 10× cross-validation 11 99.5% [1] 2016 [43]

Sequence ML DNA k-mer counts from
reads or assemblies Set Covering Machine 80%/20% data split ~330 95%–99% [10] 2019 [51]

G
ra

m
-n

eg
at

iv
es

K. pneumoniae Sequence ML DNA k-mer counts from
assemblies XGBoost 10× cross-validation ~160 (VME/ME of 4%/7%) [21] 2018 [35]

E. coli
Gene Rule AMR markers in reads or

assemblies ResFinder DB lookup Multiple independent
validation datasets 95, 99, 390 97%, 98% and 95% [16] 2020 [28]

Gene ML gene content, isolation
year, population structure Multiple 80%/20% data split 387 91% [11] 2018 [60]

Sequence ML DNA k-mer counts from
reads or assemblies Set Covering Machine 80%/20% data split ~300 80%–98% [16] 2019 [51]

P. aeruginosa
Gene ML

AMR markers, gene
content, gene expression

data

Support Vector
Machine 80%/20% data split ~80 (Sensitivity of 81%–91%) [4] 2020 [61]

Sequence ML DNA k-mer counts from
reads or assemblies Set Covering Machine 80%/20% data split ~100 73% and 95% [4] 2019 [51]

Sequence ML
DNA k-mer

presence/absence
patterns

Regression 75%/25% data split 48 88% [1] 2018 [63]

En
te

ro
co

cc
i E. faecium Sequence ML DNA k-mer counts from

reads or assemblies Set Covering Machine 80%/20% data split 27 100% [1] 2019 [51]

Gene Rule AMR markers in reads or
assemblies ResFinder DB lookup Multiple independent

validation datasets 50 and 56 93% and 96% [8] 2020 [28]

E. faecalis Gene Rule AMR markers in reads or
assemblies ResFinder DB lookup Independent

validation dataset 50 97% [5] 2020 [28]
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Much of the current treatment regimen for Gram-negative PJI hinges on resistance
to ciprofloxacin. Ciprofloxacin acts via inhibition of DNA gyrase and topoisomerase,
thereby killing the bacterial cell. Resistance is mediated by target modification to those
proteins via amino acid substitutions in the quinolone-resistance-determining region of
either protein [64]. This genotype strongly correlates with the resistance phenotype to
ciprofloxacin, granting most pAST methods that can resolve the relevant SNPs excellent
performance. For the Enterobacterales, performance metrics approaching and exceeding
the FDA guidelines for AST devices have been reported [28,35]. The picture is more
complex for P. aeruginosa, with multidrug efflux pumps and regulatory effects playing
a significant role in the manifestation of resistance [65]. Nevertheless, sensitivity and
specificity of resistance prediction of around 90% have been reported [51,61,63].

5.3. Streptococci

Pathogens from the diverse genus Streptococcus comprise <10% of PJI cases, but
are characterized by high virulence and often point towards hematogenous origin of
infection [66]. Treatment options include penicillin or ceftriaxone followed by amoxicillin
or levofloxacin [6].

Streptococcal species most associated with PJI belong to the beta-hemolytic group
B and G streptococci [5]. Little data is available on the effectiveness of pAST techniques
for these groups. However, several published studies find promising results in the alpha-
hemolytic species Streptococcus pneumoniae, allowing tentative extrapolation of performance
in beta-hemolytic streptococci in the absence of other evidence. In a small study inves-
tigating the possibility of real-time resistance prediction during long read sequencing,
Břinda et al. (2020) describe a tool which matches sequence data to a database of published
S. pneumoniae strains, inferring resistance from database strains most closely related to the
given sample. Using this technique, 91% sensitivity and 100% specificity were achieved for
five clinically relevant antimicrobial compounds [24]. The extent to which this so-called
genomic neighbor typing is applicable to other taxa remains unclear, as strain identity is
known to be an excellent predictor of resistance status for S. pneumoniae specifically [67].
The obtained performance measures were broadly mirrored by figures reported by Davis
et al. and Drouin et al., both using a sequence-centric ML approach [43,51].

5.4. Enterococci

As with streptococci, enterococcal pathogens constitute a minor fraction of PJIs (<5%
of PJI cases) but are likewise identified with early-onset virulent cases [5]. Treatment
choices depend largely on resistance to penicillins. Vancomycin-resistant enterococci (VRE)
also exhibiting resistance to most beta-lactam antibiotics are a growing global concern,
leaving only few antibiotic treatment options [68].

Overall, published performance measures of pAST applied to enterococcal pathogens
are encouraging. The strong determination of vancomycin resistance by the presence
of the vanA/B resistance gene cluster enabled both a DNA k-mer based as well as an
AMR marker-based pAST approach to achieve high predictive accuracies of >98%, and
performance measures were obtained for several other compounds using an AMR marker-
based approach (see Table 1) [28,38,51]. A tempering factor is the generally small dataset
size across all studies. More research is thus needed to confirm the applicability of these
promising results for the broader population of enterococci and for other key antibiotics.

6. Current Limitations and Perspectives

Algorithmic advances and an increase in number and size of datasets linking genotype
and resistance phenotypes have led to significant improvements in the performance of
pAST methods over the last years. However, some challenges remain unsolved, some
unique to PJI.

Recently published pAST methods use machine learning to correlate resistance pheno-
types with sequencing data. However, ML method development may suffer from several
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properties inherent to biological data [69]. For example, to achieve optimal performance,
most ML algorithms require significantly more training data than measured features per
training example (for example presence or absence of any number of AMR marker genes).
However, for biological applications, acquisition of a large and genetically diverse set of
samples is often infeasible. On the other hand, measuring several features per sample is
possible. The resulting so-called high-dimensional datasets are not well-suited for ML
due to the increased presence of spurious correlations between samples as reviewed by
Clarke et al. (2008) [69]. High dimensionality is potentiated by genome sequencing, where
thousands to millions of features can be constructed from the resulting data, for exam-
ple by gene calling or DNA k-mer counting. High data dimensionality is also usually
accompanied by biased sampling of training data. Classically, training and validation
data for ML are assumed to be sampled randomly, independently and identically from
a population. In practice, this is not the case for bacterial isolates with both sequencing
and AST data, where sample availability is governed by geographic location or focused
on distinct outbreaks. Taken together these factors can lead to model overfitting, causing
the trained model to have significantly lower accuracy when applied to independently
sampled data [70]. Special care during method development must be taken to prevent this.
Only a subset of ML algorithms is capable of effectively making use of high-dimensional
data while minimizing overfitting [30]. Likewise, rigorous validation on independently
sampled datasets is required for robust estimation of model performance in the general
case [45,71]. While the increasing availability of datasets with both NGS and AST data
will help in improving performance and generalizability, more research is required to
establish guidelines for sampling and validation of pAST ML models that can support
clinical applications.

Methods operating on data representations informed by biology can avoid some of the
problems arising with sequence-centric methods. Depending on the chosen representation,
data dimensionality can be significantly lower, reducing the impact of overfitting in the case
of ML models. For rule-based methods, a small number of hand-curated AMR markers
with published causal relation to the phenotype are employed in the decision process.
This allows for increased confidence in the validity of predictions. Nevertheless, there are
pitfalls even with rule-based pAST that rely on validated AMR determinants. Work on
S. aureus shows that, in principle, marker-based methods can enable highly accurate and
generalizable pAST for compounds with clearly delineated and fully understood resis-
tance mechanisms [29]. However, a report by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) in 2016 found that current public AMR databases are too
sparse to support clinical pAST applications for most other pathogens [72]. This sentiment
is mirrored by a recently published, comprehensive review of the state of AMR marker
databases [73].

Beyond algorithmic and data representation aspects, a large fraction of PJI cases is
caused by organisms that cannot readily be identified by microbiology culture to begin
with. Resistance calling from culture-negative and multi-species PJI cases via clinical
metagenomics is thus one of the promises of predictive AST. However, most of the methods
reviewed here were developed and benchmarked on NGS data derived from cultured bac-
terial isolates, and transferability to metagenomics data is unclear: as most pAST methods
are taxon-specific, binning of sequencing reads by pathogen taxon is necessary. Several
discussed methods also require input data to be assembled into draft genomes. De novo
assembly from metagenomic sequencing data however requires significantly higher read
depth than assembly from isolate sequencing and introduces a host of additional biases [74].
Even methods designed to operate on raw read data have been reported to exhibit lower
performance measures when applied to metagenomics datasets, thought to be attributable
to large differential abundance of species in the sample (causing low abundance pathogens
to be missed) as well as cross-taxon false positive hits of AMR determinants [24,29,75]. For
native patient samples with low taxonomic complexity, targeted sequencing of known
AMR markers is a promising intermediate step to full clinical metagenomics that warrants
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further research. Capture enrichment panels or adaptive sampling during ONT sequencing
may enable the application of existing AMR marker-based pAST methods, which exhibit
promising performance for several high impact PJI pathogens [76].

7. Conclusions

Compiling and contrasting pAST performances for common PJI pathogens, we find
notable performance variance across species, compounds, and computational approaches.
For Staphylococcus aureus, pAST can achieve overall performance congruent with FDA
guidelines for AST testing devices, using well-understood AMR marker-based methods.
For several other groups of pathogens, including the most impactful enterococci and
Gram-negative bacilli, several relevant resistance phenotypes can be resolved by pAST.
Pseudomonas aeruginosa is an outlier in the Gram-negative group, likely requiring significant
additional theoretical groundwork to enable accuracies approaching FDA guidelines.
Finally, for coagulase-negative staphylococci and beta-hemolytic streptococci, no conclusive
statements can be made due to a lack of published data relating to the effectiveness of pAST.

With the increasing availability of NGS technology for species identification in the
clinic, we expect that rule-based pAST methods targeting staphylococci may be among the
first to enter clinical practice for PJI pathogens. Methods targeting most other organisms
will likely require broader sampling of representative training data sets to improve and
validate ML models, as well as additional study of resistance mechanisms to complement
AMR marker databases.

Author Contributions: Conceptualization, L.L., I.F., B.J.H.F., S.B., J.W., A.v.H., T.R., J.G.H. and
A.E.P.; investigation, L.L. and I.F.; writing—original draft preparation, L.L. and I.F.; writing—review
and editing, L.L., I.F., B.J.H.F., S.B., J.W., A.v.H., T.R., J.G.H., A.E.P. and A.M.; visualization, I.F.;
supervision, S.B., A.v.H., T.R. and A.M.; project administration, S.B. and A.M.; funding acquisition,
A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Vienna Business Agency, grant number 24478239.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: L.L., I.F., S.B., J.W., A.E.P. and A.M. are employees of Ares Genetics GmbH. All
other authors declare no conflict of interest.

References
1. Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt.

Surg. 2018, 100, 1455–1460. [CrossRef]
2. Klug, A.; Gramlich, Y.; Rudert, M.; Drees, P.; Hoffmann, R.; Weißenberger, M.; Kutzner, K.P. The projected volume of primary and

revision total knee arthroplasty will place an immense burden on future heath care systems over the next 30 years. Knee Surg.
Sport. Traumatol. Arthrosc. 2020, 1–12. [CrossRef]

3. Alp, E.; Cevahir, F.; Ersoy, S.; Guney, A. Incidence and economic burden of prosthetic joint infections in a university hospital: A
report from a middle-income country. J. Infect. Public Health 2016, 9, 494–498. [CrossRef]

4. Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J.
Arthroplasty 2012, 27, 61–65.e1. [CrossRef] [PubMed]

5. Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [CrossRef] [PubMed]
6. Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4,

482–494. [CrossRef]
7. Motro, Y.; Moran-Gilad, J. Next-generation sequencing applications in clinical bacteriology. Biomol. Detect. Quantif. 2017, 14, 1–6.

[CrossRef] [PubMed]
8. Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019, 16, 4–10. [CrossRef]
9. Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using Genomics to Track Global

Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [CrossRef]
10. Vegyari, C.; Underwood, A.; Kekre, M.; Argimon, S.; Muddyman, D.; Abrudan, M.; Carlos, C.; Donado-Godoy, P.; Okeke, I.N.;

Ravikumar, K.L.; et al. Whole-genome sequencing as part of national and international surveillance programmes for antimicrobial
resistance: A roadmap. BMJ Glob. Health 2020, 5, e002244. [CrossRef]

http://doi.org/10.2106/JBJS.17.01617
http://doi.org/10.1007/s00167-020-06154-7
http://doi.org/10.1016/j.jiph.2015.12.014
http://doi.org/10.1016/j.arth.2012.02.022
http://www.ncbi.nlm.nih.gov/pubmed/22554729
http://doi.org/10.1128/CMR.00111-13
http://www.ncbi.nlm.nih.gov/pubmed/24696437
http://doi.org/10.1302/2058-5241.4.180092
http://doi.org/10.1016/j.bdq.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29255684
http://doi.org/10.20892/j.issn.2095-3941.2018.0055
http://doi.org/10.3389/fpubh.2019.00242
http://doi.org/10.1136/bmjgh-2019-002244


Biomedicines 2021, 9, 910 11 of 13

11. World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug
Resistance in Mycobacterium Tuberculosis Complex: Technical Guide 2018; WHO: Geneva, Switzerland, 2018.

12. Rychert, J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. 2019, 2,
1–5. [CrossRef]

13. Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices.
Clin. Infect. Dis. 2009, 49, 1749–1755. [CrossRef] [PubMed]

14. Kalbian, I.; Park, J.W.; Goswami, K.; Lee, Y.-K.; Parvizi, J.; Koo, K.-H. Culture-negative periprosthetic joint infection: Prevalence,
aetiology, evaluation, recommendations, and treatment. Int. Orthop. 2020, 44, 1255–1261. [CrossRef] [PubMed]

15. Klein, M.; Bacher, J.; Barth, S.; Atrzadeh, F.; Siebenhaller, K.; Ferreira, I.; Beisken, S.; Posch, A.E.; Carroll, K.C.; Wunderink,
R.G.; et al. Multicenter Evaluation of the Unyvero Platform for Testing Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2020.
[CrossRef]

16. Lee, B.R.; Hassan, F.; Jackson, M.A.; Selvarangan, R. Impact of multiplex molecular assay turn-around-time on antibiotic
utilization and clinical management of hospitalized children with acute respiratory tract infections. J. Clin. Virol. 2019, 110, 11–16.
[CrossRef]

17. Lausmann, C.; Kolle, K.N.; Citak, M.; Abdelaziz, H.; Schulmeyer, J.; Delgado, G.D.; Gehrke, T.; Gebauer, M.; Zahar, A. How
reliable is the next generation of multiplex-PCR for diagnosing prosthetic joint infection compared to the MSIS criteria? Still
missing the ideal test. HIP Int. 2020, 30, 72–77. [CrossRef]

18. Graue, C.; Schmitt, B.H.; Waggoner, A.; Laurent, F.; Abad, L.; Bauer, T.; Mazariegos, I.; Balada-Llasat, J.-M.; Horn, J.; Wolk, D.;
et al. 322. Evaluation of the BioFire® Bone and Joint Infection (BJI) Panel for the Detection of Microorganisms and Antimicrobial
Resistance Genes in Synovial Fluid Specimens. Open Forum Infect. Dis. 2020, 7, S233–S234. [CrossRef]

19. ORTHOPEDICS|Orthopedic & Periprosthetic Joint Infection|MicroGen Diagnostics. Available online: https://microgendx.com/
orthopedic-joint-infections/ (accessed on 7 June 2021).

20. Wragg, P.; Randall, L.; Whatmore, A.M. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification
system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing
for the identification of bacteria of veterinary interest. J. Microbiol. Methods 2014, 105, 16–21. [CrossRef]

21. Garza-González, E.; Bocanegra-Ibarias, P.; Dinh, A.; Morfín-Otero, R.; Camacho-Ortiz, A.; Rojas-Larios, F.; Rodríguez-Zulueta,
P.; Arias, C.A. Species identification of Enterococcus spp: Whole genome sequencing compared to three biochemical test-based
systems and two Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) systems. J.
Clin. Lab. Anal. 2020, 34, e23348. [CrossRef]

22. Hong, E.; Bakhalek, Y.; Taha, M.K. Identification of Neisseria meningitidis by MALDI-TOF MS may not be reliable. Clin. Microbiol.
Infect. 2019, 25, 717–722. [CrossRef] [PubMed]

23. MacFadden, D.R.; Melano, R.G.; Coburn, B.; Tijet, N.; Hanage, W.P.; Daneman, N. Comparing Patient Risk Factor-, Sequence
Type-, and Resistance Locus Identification-Based Approaches for Predicting Antibiotic Resistance in Escherichia coli Bloodstream
Infections. J. Clin. Microbiol. 2019, 57, 1–9. [CrossRef]
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