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Abstract

Purpose

The aim of this study was to investigate the effect of extracorporeal shockwave therapy

(ESWT) on bone microstructure as well as the bone-tendon-interface and the musculo-ten-

dinous transition zone to explain the previously shown improved biomechanics in a degener-

ative rotator cuff tear animal model. This study hypothesized that biomechanical

improvements related to ESWT are a result of improved bone microstructure and muscle

tendon properties.

Methods

In this controlled laboratory study unilateral supraspinatus (SSP) tendon detachment was

performed in 48 male Sprague-Dawley rats. After a degeneration period of three weeks,

SSP tendon was reconstructed transosseously. Rats were randomly assigned into three

groups (n = 16 per group): control (noSW); intraoperative shockwave treatment (IntraSW);

intra- and postoperative shockwave treatment (IntraPostSW). Eight weeks after SSP repair,

all rats were sacrificed and underwent bone microstructure analysis as well as histological

and immunohistochemical analyses.

Results

With exception of cortical porosity at the tendon area, bone microstructure analyses

revealed no significant differences between the three study groups regarding cortical and

trabecular bone parameters. Cortical Porosity at the Tendon Area was lowest in the Intra-

PostSW (p�0.05) group. Histological analyses showed well-regenerated muscle and
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tendon structures in all groups. Immunohistochemistry detected augmented angiogenesis

at the musculo-tendinous transition zone in both shockwave groups indicated by CD31 posi-

tive stained blood vessels.

Conclusion

In conclusion, bone microarchitecture changes are not responsible for previously described

improved biomechanical results after shockwave treatment in rotator cuff repair in rodents.

Immunohistochemical analysis showed neovascularization at the musculo-tendinous transi-

tion zone within ESWT-treated animals. Further studies focusing on neovascularization at

the musculo-tendinous transition zone are necessary to explain the enhanced biomechani-

cal and functional properties observed previously.

Clinical relevance

In patients treated with a double-row SSP tendon repair, an improvement in healing through

ESWT, especially in this area, could prevent a failure of the medial row, which is considered

a constantly observed tear pattern.

Introduction

Depending on tear size, healing failure and re-rupture rates after rotator cuff repair are

reported from 20% up to 94% [1, 2]. Bony changes as well as degenerative tendon structure

including but not limited to loss of tendon organization seem to be important reasons [3, 4].

Osseous rarefaction in the humeral head in patients suffering from chronic rotator cuff tears

were shown earlier [5]. Bony deteriorations, such as osteoporosis, were described to be an

important risk factor of healing failure after rotator cuff repair [6]. Chung et al. showed, that

especially the decrease in Bone Mineral Density (BMD) and fatty infiltration of muscle and

tendon degeneration in chronic tendon ruptures have a direct influence on postoperative heal-

ing [6]. Also structural bone changes, detected by high resolution quantitative computed

tomography, have been shown to be associated with rotator cuff tears [7]. Degenerative

changes of muscles and tendons structures such as intramuscular and myocellular fat infiltra-

tion, atrophy, fibrosis and loss of tendon structure also have an important influence on the

healing rate after rotator cuff repair [8, 9].

Extracorporeal shockwave therapy (ESWT) has shown a positive influence on tissue regen-

eration in experimental studies and clinical trials [10, 11]. Tendon regeneration with modula-

tion of cell proliferation, decreased expression of inflammation markers as well as improved

muscle regeneration seem to be important key mechanisms of ESWT [12–14]. Especially Vas-

cular Endothelial Growth Factor, known to induce angio- as well as lymphangiogenesis [15],

cell proliferation via the extracellular signal-regulated kinase 1/2 pathway [13] as well as

inflammatory modulation via Toll-Like Receptor 3 [16]. The positive influence on bone

metabolism and improved healing has also been described several times and is routinely used

in the clinic for various bone pathologies [17–19]. Increased FGF-2 production by osteoblasts

stimulated using ESWT was reported to improve bone formation as well as bone healing [20].

However, studies investigating the effect and mechanisms of ESWT in rotator cuff pathologies

are rare. Recently, we were able to show the effect of ESWT in an experimental study very
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clearly. Substantial improvement of biomechanical properties as well as shoulder function was

shown using ESWT after rotator cuff repair in rodents with degenerative tendon tears [21].

The aim of this study was to investigate the effect of ESWT on bone microstructure as well

as the bone-tendon-interface and the musculo-tendinous transition zone to explain the previ-

ously shown improved biomechanics in a degenerative rotator cuff tear animal model.

It was hypothesized, that proved biomechanical improvements related to ESWT are a result

of ameliorated bone microstructure as well as favorable changes in the bone-tendon-muscle

interfaces after repair of chronic rotator cuff ruptures in a rat model.

Material and methods

The study was approved by the local Institutional Animal Care and Use Committee (Munici-

pal department 58 of the City of Vienna; No. 504113/2016/16). All methods were carried out

in accordance with relevant guidelines and regulations. 48 male Sprague-Dawley rats (400–410

g) were used for this study. Rats were housed in cages pairwise, individually identified by a

tail-mark, in a temperature- and light-controlled room. Access to food and water was provided

ad libitum and continuous weight control was performed once a week. All rats were randomly

assigned to one of three groups (n = 16 per group): control/noSW; intraoperative shockwave

group (IntraSW); intra- and postoperative shockwave group (IntraPostSW) (Fig 1). At time

point zero, all rats underwent unilateral supraspinatus (SSP) tenotomy of the left shoulder as

previously reported [22]. After an anterolateral skin incision, the deltoid muscle was split in

fiber direction. Surgical dissection of the SSP tendon and sharp detachment of its bony inser-

tion at the humeral head was carried out. Due to adhesion and scar tissue formation the SSP

tendon was reinforced with a suture and left subcutaneously in order to facilitate identification

in the follow-up surgery [21]. Then the deltoid muscle was closed and skin was sutured. Three

weeks after the initial surgery, SSP repair was conducted in all rats. Through the same skin

incision, the deltoid muscle was sharply split and the SSP tendon insertion area was gently

debrided. The SSP tendon was identified and a modified Mason-Allen stitch using a Prolene

5–0 suture, (Johnson & Johnson, Ethicon Inc., New Jersey, US) for tendon refixation was per-

formed. For transosseous refixation, a bone tunnel in anteroposterior direction close to the

greater tuberosity of the humerus was drilled. By passing the suture through the tunnel the ten-

don was readapted and secured at the anatomic insertion area [21]. Closure of the deltoid mus-

cle and skin closure was performed equally to the first operation. Immediately after skin

closure, the IntraSW and IntraPostSW group received percutaneous electrohydraulic gener-

ated ESWT (600 impulses; 0.19 mJ/mm2 energy flux density, 3 Hz (DermaGold; Tissue Regen-

eration Technologies, LLC; manufactured by MTS Europe GmbH)) with focus on the SSP

tendon and the humeral head under anesthesia (Fig 2A). All surgical procedures were per-

formed in general anesthesia (inhalational anesthesia with a mixture of isoflurane/oxygen) by

a veterinarian and under subcutaneous (buprenorphine) and per os (meloxicam) analgesia.

Fluid loss was substituted by subcutaneous acetat fluid. Free cage activity with enriched envi-

ronment for recovery was allowed to all rats. Rats were monitored regularly by a veterinarian

and fluid substitution as well as postsurgical analgesia was performed. One week after repair

surgery, the IntraPostSW group received a second shockwave treatment in the same intensity

as the first therapy. Eight weeks after repair, all animals were sacrificed under deep anesthesia

by an overdose of thiopental intracardially. Immediately after euthanasia, the humerus of both

sides were carefully exarticulated (Fig 2B). The SSP tendon was carefully prepared. The

remaining rotator cuff was removed. One rat in the control group dedicated for histological

analyses died after the repair surgery because of perioperative anesthesiologic complications.
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Another rat of the IntraPostSW group intended for histological analyses was excluded due to

joint infection.

Micro-Computed Tomography (microCT)

For microCT analyses 36 rats were used (12 per group). Both sides (operated left and non-

operated right) were scanned immediately after exarticulation [23]. Scanning and segmen-

tation was performed by a blinded examiner. Subsequently, all specimens were placed in 15

ml-centrifuge tubes without any additional substances. MicroCT scans (μCT 50, SCANCO

Fig 1. Schematic representation of the study design. SSP: supraspinatus; SW: shockwave therapy; IntraSW: intraoperative SW;

IntraPostSW, intra- and postoperative SW.

https://doi.org/10.1371/journal.pone.0262294.g001
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Medical AG, Brüttisellen, Switzerland) were performed at 90 kVp, 200 μA, 0.5 mm Al Filter

with 1000 Projections per 180˚ integrated for 500 ms with a Field of View of 20.48 mm and

reconstructed to a resolution of 10 μm. Calibration of the scanned images was conducted

with the SCANCO calibration phantom. The orientation of the humerus was standardized

using the open-source platform Fiji for biological-image analysis [24]. All specimens were

then aligned along the z-axis and rotated along that axis to the same orientation [24, 25].

The untreated right humerus was mirrored and rigidly registered to the left humerus using

Amira™ with the affine registration tool (version 6.1.1, Zuse Institute Berlin, Thermo Fisher

Scientific, Waltham, USA). The Definiens Developer XD™ (version 2.1.1, Definiens Inc.,

Cambridge, USA) was used for the segmentation of the scans. The bone tunnel at the ten-

don insertion area (480 μm diameter), which was drilled for transosseous refixation, and a

perifocal area around this tunnel (160 μm) were excluded from calculations. The position of

the tunnel was calculated by manually selecting approximately 5–10 points in the center of

the remaining tunnel and fitting the central axis to the selected points by optimizing

squared distances. The tunnel was copied from the treated to the registered untreated side

to exclude the same region. The growth plate was segmented by manually drawing points

along the growth plate on several slices and interpolating between them. Where the interpo-

lation was not within the growth plate, additional points and slice positions were added to

match the actual geometry of the growth plate more closely. The resulting regions of interest

in the condyle extended across approximately 200–300 slices. An appropriate threshold was

selected which was identical for all samples. Cortical and trabecular bone was separated

using a combination of surface tension constrained region growing from outside the sample

and a local bone volume density requirement which separates the dense outer layer of corti-

cal bone from the less dense interior trabecular structures. The bone directly adjacent to the

growth plate was excluded from measurements using the same procedure. The humerus

was divided into four regions of interest (ROI): Cortex Articular Surface Area, Trabecular

Bone Articular Surface Area, Cortex Tendon Area, Trabecular Bone Tendon Area. Thereby,

bone-cartilage interface marked the separation of Articular Surface Area (ASA) and Tendon

Area (TA). Each segmented ROI was exported as an image stack and measured using Fiji

Fig 2. A: Shockwave treatment subsequently after tendon repair in IntraSW and IntraPostSW group. B: Preparation of the specimens immediately after euthanasia (left:

operated side, right: non-operated side).

https://doi.org/10.1371/journal.pone.0262294.g002
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and the BoneJ plugin [26]. Trabecular microstructure parameters, including trabecular

bone volume fraction (BV/TV, %), mean trabecular spacing (Tb.Sp mean, μm), and mean

trabecular thickness (Tb.Th mean, μm) were analyzed. Cortical parameters including corti-

cal porosity (Ct.Po, %), mean cortical thickness (Ct.Th mean, μm), and mean cortical pore

diameter (PoreDM mean, μm) were examined. For calculation, a ratio of the operated to the

non-operated side for each parameter was created.

Histological and immunohistochemical analysis of musculo-tendinous

transition zone

As mentioned above, 2 rats were excluded from the histological and immunohistochemical

analysis. After euthanasia of the remaining 10 rats the SSP muscle-tendon transition zone of

both shoulders (operated left and non-operated right) was used for histological and immuno-

histochemical analyses. Three examiners (X.F., S.N., R.M.) blinded to the study group alloca-

tion performed the evaluations. The SSP tendon was cut at a distance of 7 mm from tendon

insertion area and another cut was performed at 20 mm distance. The tendon and the mus-

culo-tendinous transition zone were fixed in 4% buffered formaldehyde solution for 24 hours.

Subsequently, the samples were washed with tap water and shifted into 50% ethanol solution

for 1 hour. Then they were stored in a 70% ethanol solution [27]. After embedding in paraffin

wax, sections of 4 μm thickness were performed (with exception of hematoxylin and eosin

(HE) staining at a 3 μm thickness). Staining with Martius, Scarlet and Blue (MSB) for collagen

and fibrin as well as HE was conducted according to standard protocols [27]. Scanning and

evaluating was performed using a light microscope (Axioplan2 imaging, Carl Zeiss Microscopy

GmbH, Jena, Deutschland; Olympus BX61VS, Olympus Corporation, Tokyo, Japan). Immu-

nohistochemical staining was carried out according to standard procedures using a monoclo-

nal and a polyclonal antibody against neurofilament (NF) proteins (Dako, Santa Clara, USA;

Immunologic, Duiven, NL) for nerve tissue imaging, two polyclonal antibodies against CD31

(Thermo Fisher Scientific, Waltham, USA; Immunologic, Duiven, NL), and two polyclonal

antibodies against collagen III (Abcam, Cambridge, USA; Dako, Santa Clara, USA) and against

collagen I (Abcam, Cambridge, USA; Immunologic, Duiven, NL) for tendon, muscle and scar

tissue visualization [27–32]. The musculo-tendinous transition zone was defined as primary

region of interest. Two standardized regions per sample (675 x 535 μm) at the musculo-tendi-

nous transition zone were chosen and used for processing with a light microscope at a magnifi-

cation of 20 and AxioVision microscope software (AxioVision1, version 3.1., Carl-Zeiss AG,

Oberkochen, Germany). Evaluation of immunohistochemical samples was performed with

ImageJ (version 1.51s, NIH, USA) [33].

Histological analysis of bone-tendon transition zone

To evaluate bone-tendon healing and regeneration, hard tissue histology was performed in 10

rats. Both sides (operated left and non-operated right) were subjected to a qualitative histologi-

cal analysis. Using a diamond saw, the distal third of the humerus was dissected to protect the

region of interest and the SSP tendon was severed at 7 mm distance from tendon insertion

area as previously mentioned. The bone-tendon specimens were fixed in 4% buffered formal-

dehyde solution at 4˚C for 6 weeks. Undecalcified thin ground sections and Lévai-Laczkó

staining were performed as described previously [34, 35]. To achieve a representative transec-

tion through the bony insertion site of the SSP tendon, slices were oriented parallel to the lon-

gitudinal axis of the humerus. Digital images with a resolution of 0.32078 μm per pixel were

produced with an Olympus BX61VS scanning microscope and Olympus dotSlide 2.4 digital

virtual system (Olympus1, Tokyo, Japan).
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Statistical analyses

A power analyses was performed with the primary outcome parameter BV/TV in microCT

analysis based on a previous study investigating the effect of ESWT on BV/TV in rats [36].

With these estimations a power of 0.80 is achieved (α = .05) with 12 specimens per group. Test-

ing for normal distribution was performed for microCT analyses using the D’Agostino & Pear-

son omnibus normality test. In cases of no normal distribution, the Kruskal-Wallis test and

Dunn’s multiple comparisons test were conducted. In the case of a normal distribution, one-

way ANOVA and Tukey’s/Sidak’s multiple comparisons tests were performed. For calculation,

a ratio of the operated to the non-operated side for each parameter was created. GraphPad

Prism version 6.00 (GraphPad Software, La Jolla, California, USA, www.graphpad.com) was

used for statistical calculations.

Results

Macroscopically, the SSP muscle and tendon structure showed no differences between the dif-

ferent groups. No suture disruptions or gap formations at the tendon insertion area were

observed.

MicroCT

No significant differences were observed in trabecular bone parameters between the three

study groups (Fig 3). Cortical Bone assessment did not show any significant differences,

excluding Ct. Po at the Tendon Area. The IntraSW group had a significantly higher (p� 0.05)

Ct. Po (%) in the Tendon Area than the IntraPostSW group (Fig 4). A higher Ct. Po was also

observed in the Control Group, but because of the high variance, the differences did not reach

significance.

Histology/immunohistochemistry–musculo-tendinous transition zone

HE and MSB staining demonstrated a regular tendon and muscle quality in all samples (Fig

5A and 5B). No differences were detected between the groups and their contralateral sides.

Collagen III and Collagen I staining in muscle, tendon, and scar tissue revealed no differences

among the study groups (Fig 6A and 6B). None of the three study groups showed noticeable

defects or scar tissue production compared with the non-operated contralateral side. NF stain-

ing showed clearly visible nerve structures. In all study groups, nerve structures could be

located, and no differences between the three groups and their contralateral sides were dis-

cernible (Fig 5C). Evaluating CD31 stained samples, a higher density of blood vessels was rec-

ognized in ESWT treated groups (IntraSW (Fig 7B) > IntraPostSW (Fig 7C) in comparison to

the control group (Fig 7A).

Hard tissue histology–bone-tendon transition zone

The operated shoulders showed that the stump of the tendon that had been cut close to the bone

surface was still visible, the connection between the ruptured tendon and the humerus being

located on the lateral side (Fig 8). Only granulation tissue could be observed between the stump

and the tendon brought in proximity to it by the suture in place. Neither the zone of calcified

fibrocartilage of the former enthesis nor the lamellar bone tissue immediately underlying it,

showed any differences in histological or cellular structure between groups. No signs of increased

resorption or bone remodeling could be detected underneath the enthesis in animals treated

with shock waves. The structure of cancellous bone in the region of the epiphysis that had not

been affected by the drilling of the tunnel for tendon refixation was similar in all study groups.

PLOS ONE Improved biomechanics in rotator cuff repair after shockwaves is not reflected by bone microarchitecture

PLOS ONE | https://doi.org/10.1371/journal.pone.0262294 January 5, 2022 7 / 15

http://www.graphpad.com/
https://doi.org/10.1371/journal.pone.0262294


Discussion

This study aimed to evaluate the effects of ESWT on bone microstructure as well as the bone-

tendon-interface and musculo-tendinous transition zone in a chronic rodent rotator cuff tear

model. Bone microarchitecture after a chronic rupture was not affected by shock wave treat-

ment after tendon repair. However, immunohistochemical analysis showed neovascularization

at the musculo-tendinous transition zone in both ESWT groups which may be explaining the

enhanced biomechanical properties observed previously.

Due to high failure rates in repair of chronic rotator cuff tears, techniques for improvement

are of high clinical relevance [4]. Studies investigating shockwave treatment in tendon regener-

ation are rare. A study investigating radial pressure waves after rotator cuff repair was not able

to find any improvements [37]. However, due to physical attributes, radial pressure waves are

differing significantly from shockwaves and do not meet the benefits of focused ESWT [11].

Brañes et al. presented improved neovascularization and neolymphangiogenesis after rotator

cuff repair in ESWT treated patients [38]. Recently, clear biomechanical and functional

improvements in ESWT treated male Sprague-Dawley rats after repair of chronic rotator cuff

tears have been shown [21]. Gene expression analysis showed no significant differences

Fig 3. Box-and-whisker plots showing trabecular bone parameters: Bone Volume/Tissue Volume (BV/TV), Trabecular Spacing (Tb.Sp), Trabecular Thickness (Tb.

Th). TA: Tendon Area, ASA: Articular Surface Area.

https://doi.org/10.1371/journal.pone.0262294.g003
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between the groups. A trend towards a more regenerative healing in ESWT groups in contrast

to a more scar-mediated process in the control group was shown by TGF-β1/TGF-β3 ratio

measurements [21].

Many studies have indicated the beneficial effect of ESWT on tissue regeneration in experi-

mental studies and clinical trials [10, 39]. Thereby, stimulation of growth factors as well as

modulation of cell proliferation and inflammation processes seem to play important key roles

and ESWT was described to have a beneficial effect on bone, tendon, and muscle structures.

In this study, bone microarchitecture assessment was performed according to earlier publi-

cations and established bone structure parameters [40, 41]. In an experimental model, the ana-

bolic effect of ESWT on bone metabolism was detected by single-photon-emission computed

tomography and microCT [19]. As this study did not show significant changes of bone micro-

structure parameters, the reason for the biomechanical improvement in ESWT groups seems

not to be bony changes [21]. A possible reason may be the energy level used. In this study

medium-energy level ESWT was applied. Moya et al. described, that best evidence for tendon

disorders is provided for low- and medium-energy level ESWT. High-energy level ESWT

seems to be effective in bone pathologies as well [11]. Van der Jagt et al. have shown the benefi-

cial effect of ESWT on osteoporotic bone changes [42]. The effect and benefit of ESWT in the

Fig 4. Box-and-whisker plots showing cortical bone parameters: Cortical Porosity (Ct. Po), Cortical Thickness (Ct. Th), Pore Diameter (Pore DM). TA: Tendon

Area, ASA: Articular Surface Area.

https://doi.org/10.1371/journal.pone.0262294.g004
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osteoporotic bone may be expectable in the humeral head after rotator cuff repair as well. Due

to the increased risk of healing failure in patients with osteoporosis [6], further investigations

focusing on this have already been initiated.

Earlier studies have also shown the impact of ESWT on tendon regeneration. Especially

increased collagen synthesis by tenocytes as well as decreased expression of tendinopathy asso-

ciated interleukins and matrix metalloproteases [14]. In muscle a single as well as repetitive

ESWT resulted in improved blood flow [12]. Furthermore, oxygenation increase, a

Fig 5. A: Hematoxylin and Eosin (H&E), B: Martius, Scarlet and Blue (MSB), and C: Neurofilament (NF) stained sections of a musculo-tendinous transition zone.

https://doi.org/10.1371/journal.pone.0262294.g005

Fig 6. A: Collagen I and B: Collagen III stained sections of a musculo-tendinous transition zone.

https://doi.org/10.1371/journal.pone.0262294.g006
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proliferative effect, and metabolic process activation have been described [43]. To simulate

degenerative changes, repair of the tendon is performed after a 3-weeks period after

Fig 7. CD31 staining of musculo-tendinous transition zone: A: Control Group; B: IntraSW Group; C: IntraPostSW Group. Green Arrows are marking blood vessels.

https://doi.org/10.1371/journal.pone.0262294.g007

Fig 8. Undecalcified thin ground section and Lévai-Laczkó staining of bone-tendon transition zone.

https://doi.org/10.1371/journal.pone.0262294.g008
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supraspinatus tendon detachment. Buchmann et al. recommend this period due to the high

self-healing potential in rats and the risk of fatty infiltration in humans [44]. In this study his-

tological evaluation of muscle structure, nerve structures, and Collagen I and III showed no

differences between the groups. HE and MSB staining indicate regenerated muscle- and ten-

don-tissue in all groups. This seems to be a confirmation of the chosen animal model and as a

consequence a basis for further investigations. Histological analyses of CD31 staining provided

the lead of increased blood vessel numbers in ESWT treated groups in the musculo-tendinous

transition zone. Despite the low number of animals in histological evaluations and therefore

missing possibilities of quantification, this seems to be the reason for the improved bio-

mechanical results, as the tendon rupture in load-to-failure testing occurred mostly at this

region of interest [21]. In particular, patients treated by arthroscopic double-row SSP tendon

repair, suffer regularly from failure of the medial row with retears in the musculo-tendinous

junction [45, 46]. Healing improvement by ESWT especially in this area may prevent from

medial row failure. Therefore, further experimental studies focusing on this region and clinical

studies are necessary and have already been initiated.

The use of rats with open growth-plates is possibly a limitation. For reasons of variability

reduction and because of health-related problems in older rats, younger rats with comparable

conditions were used according to earlier studies [4]. Another possible limitation is the small

sample size for histological and immunohistochemical analysis. As primary focus was set on

bone microstructure evaluations, rats were divided throughout examinations accordingly.

Another limitation of this study is the missing of an interobserver reliability analysis for the

imaging analysis.

In conclusion, bone microarchitecture changes are not responsible for previously described

improved biomechanical results after shockwave treatment in rotator cuff repair in rodents. In

contrast, immunohistochemical analysis showed neovascularization at the musculo-tendinous

transition zone, an area susceptible to failure, in ESWT treated animals. Further studies focus-

ing on neovascularization at the musculo-tendinous transition zone after ESWT are necessary

to support these findings.
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