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Abstract: Purpose of Review: The purpose of this review is to summarize recent literature regarding
the latest design modifications and biomechanical evolutions of reverse total shoulder arthroplasty
and their impact on postoperative outcomes. Recent findings: Over the past decade, worldwide
implantation rates of reverse total shoulder arthroplasty have drastically increased for various shoul-
der pathologies. While Paul Grammont’s design principles first published in 1985 for reverse total
shoulder arthroplasty remained unchanged, several adjustments were made to address postoperative
clinical and biomechanical challenges such as implant glenoid loosening, scapular notching, or lim-
ited range of motion in order to maximize functional outcomes and increase the longevity of reverse
total shoulder arthroplasty. However, the adequate and stable fixation of prosthetic components can
be challenging, especially in massive osteoarthritis with concomitant bone loss. To overcome such
issues, surgical navigation and patient-specific instruments may be a viable tool to improve accurate
prosthetic component positioning. Nevertheless, larger clinical series on the accuracy and possible
complications of this novel technique are still missing.

Keywords: reverse total shoulder arthroplasty; biomechanics; implant design; patient-specific
instruments; computer navigation

1. Introduction

The idea of reverse total shoulder arthroplasty (RTSA) was first introduced in 1974 by
Charles Neer and has considerably progressed ever since [1–3]. The great novelty of RTSA
was its ability to treat not only glenohumeral arthrosis, but also rotator cuff deficiency.
Nevertheless, Charles Neer’s first design had several limitations such as glenoid component
loosening and implant breakage due to fairly constrained designs as well as a lateralization
of the center of rotation [3–5].

In 1985, Paul Grammont introduced the novel “ball-and-socket” design, which was
based on four key principles: (1) shifting the center of rotation medially to decrease the
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mechanical torque at the glenoid component, thus avoiding glenoid loosening; (2) lowering
the humerus to tension the deltoid muscle, which increases muscle fiber recruitment of
the anterior and posterior deltoid in order to compensate a deficient rotator cuff; (3) a
fixed center of rotation distalized and medialized to the glenoid joint line, leading to an
inherently stable implant; (4) a large glenosphere increasing the range of motion through
a semi-constrained implant feature [1,6]. In 1987, the first series of eight cases reported
preliminary functional outcomes: all patients were pain-free, however the postoperative
range of motion varied widely among patients [2,7]. Unsatisfied with these results, the
second generation of Paul Grammont’s RTSA had a revised glenosphere with the shape of
a hemisphere to place the center of rotation directly in contact with the glenoid surface in
order to reduce shear forces and mechanical torque on the implants and ensure a strong
fixation [2,3]. Over time, several changes in implant designs were performed in order
to reduce complications and expand the surgical indications of RTSA from the rotator
cuff-deficient osteoarthritis [8] to proximal humerus fractures [8], irreparable rotator cuff
tears without glenohumeral osteoarthritis [9], primary glenohumeral osteoarthritis with
concomitant glenoid bone loss and an intact rotator cuff, and even infections or patients
with a deltoid palsy.

Although RTSA has been performed for more than 30 years, varying outcomes have
been published, reporting complication rates ranging from 0 to 69% [2,10–16]. Therefore,
research continues tirelessly on the development of new implant designs to maximize func-
tion and extend implant survival [17]. Even if the prosthetic properties of different implants
have variable biomechanical and kinematic implications, the principles of RTSA consisting
of the glenoid baseplate with diverging polar screws and two equatorial screws, the gleno-
sphere shaped as a hemisphere, the humeral stem(-less) component including a modular
metaphyseal implant, and the articulating polyethylene inlay remain unchanged (Figure 1).
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Figure 1. Illustration of biomechanical properties in native joint and reverse total shoulder arthro-
plasty. Relative to the normal anatomy, the center of rotation (CoR) is shifted medially and inferi-
orly, thus lengthening the moment arm (r) and increasing the deltoid force (FD). 1: glenoid baseplate; 
2: glenosphere; 3: metaphyseal component; 4: humeral stem. 

Figure 1. Illustration of biomechanical properties in native joint and reverse total shoulder arthro-
plasty. Relative to the normal anatomy, the center of rotation (CoR) is shifted medially and inferiorly,
thus lengthening the moment arm (r) and increasing the deltoid force (FD). 1: glenoid baseplate;
2: glenosphere; 3: metaphyseal component; 4: humeral stem.

2. Biomechanical Considerations

From a biomechanical point of view, modern modifications of implant designs and
component’ configurations are still based on the four key principles of Paul Grammont’s
design (Figure 2). Compared to the anatomic shoulder replacement, the center of rotation
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in RTSA is distalized and medialized in order to be parallel to the glenoid joint line [3].
Since all joint reactive forces are transmitted through a fixed center of rotation, the design of
the RTSA maximizes compressive forces while minimizing shear forces at the bone implant
interface [18]. The hemisphere shape of the glenoid component leads to a direct reduction
in the center of rotation to the bone implant interface [6,19]. However, the medialization
of the center of rotation carries the risk of scapular notching in the humeral component
with the attached inlay. This mechanical impingement of the humeral component and the
inferior scapular neck during adduction of the arm is still considered to be the primary
mechanical complication in RTSA [19,20].
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System (Zimmer Biomet, Warsaw, IN, USA); (G) Left shoulder, cemented custom made reverse total 
shoulder arthroplasty (Zimmer Biomet, Warsaw, IN, USA); (H) Left shoulder, uncemented 
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By distalization and medialization of the center of rotation, RTSA changes the bio-
mechanics of the glenohumeral joint in a way that maximizes deltoid efficiency, thus en-
abling the patient’s deltoid muscle force by permission of a higher preload of the muscle 
fibers and a reduction in the deltoid muscle in relation to the joint’s center of rotation 
[2,21]. This leads to unavoidable and severe changes in the deltoid muscle as fibers are 
oriented more vertically and all three sub-regions of the deltoid muscle become primary 
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Figure 2. Standard anteroposterior radiographs of the shoulder after reverse total shoulder im-
plantation with different designs and implantation techniques: (A) Right shoulder, cemented Delta
XTEND™ (DePuy Synthes, Raynham, MA, USA); (B) Right shoulder, cemented Affinis Inverse
(Mathys, Bettlach, Switzerland); (C) Right shoulder, uncemented HUMELOCK™ Reverse (FX Solu-
tions, Viriat, France); (D) Right shoulder, cemented Lima SMR-system (Lima, Villanova, San Daniele
del Friuli, Italy); (E) Left shoulder, cemented Tornier AEQUALIS™ ADJUSTABLE REVERSED
(Wright, Memphis, TN, USA); (F) Left shoulder, uncemented Comprehensive® Reverse Shoulder
System (Zimmer Biomet, Warsaw, IN, USA); (G) Left shoulder, cemented custom made reverse
total shoulder arthroplasty (Zimmer Biomet, Warsaw, IN, USA); (H) Left shoulder, uncemented
MyShoulder® (Medacta, Castel San Pietro, Switzerland).

By distalization and medialization of the center of rotation, RTSA changes the biome-
chanics of the glenohumeral joint in a way that maximizes deltoid efficiency, thus enabling
the patient’s deltoid muscle force by permission of a higher preload of the muscle fibers
and a reduction in the deltoid muscle in relation to the joint’s center of rotation [2,21].
This leads to unavoidable and severe changes in the deltoid muscle as fibers are oriented
more vertically and all three sub-regions of the deltoid muscle become primary shoulder
abductors (Figure 1) [3,22,23]. Several studies investigating the postoperative range of
motion reported that deltoid abduction effectiveness increases up to 30% compared to the
native anatomy [21,24,25]. In RTSA, the deltoid’s abduction moment arm has much greater
fluctuation, peaking at 90◦ of abduction, the position at which the weight of the arm creates
its greatest adducting moment [3,18,26]. Hamilton et al. stated that, especially in patients



J. Clin. Med. 2022, 11, 1512 4 of 15

with rotator cuff tear arthropathy, only the posterior deltoid is left to assist with external
rotation [27].

3. Implant Design
3.1. Glenoid Baseplate

After the failure of a directly cemented fixation of the two-thirds of a sphere-shaped
glenosphere to the glenoid bone stock, the original design of the glenoid baseplate, accord-
ing to Paul Grammont, was fixed using a central press-fit, hydroxy-apatite-coated cylindric
peg and two additional peripheral divergent screws [7]. Nowadays, several designs of the
glenoid baseplate with different fixation possibilities are available.

Anatomically, a pear-shaped or ovoid glenoid baseplate may improve primary implant
fixation and bone ingrowth by an increased contact area of the implant to the glenoid [17].
In a biomechanical study, Roche et al. reported of a reduced fixation strength of a circular
glenoid baseplate compared to a larger oval baseplate [28]. Theoretically, a convex-curved
glenoid baseplate following the glenoid’s anatomical concavity allows a larger contact area
between the implant and the bone [29]. However, Roche et al. reported no differences in
fixation strength when comparing a flat glenoid baseplate with a convex-curved glenoid
baseplate [28].

Regarding different anchoring possibilities for glenoid baseplate fixation, no scientific
evidence on superior or inferior stability exists between screwed, keeled, single-pegged,
or double-pegged glenoids [30,31]. However, in the case of severe glenoid bone loss or an
additional glenoid baseplate augmentation, the central glenoid baseplate fixation needs
to be extended in order to ensure a sufficient primary fixation strength [17]. Norris et al.
reported on a lengthened central peg of 30 mm in order to gain a purchase of over 10 mm
in the native glenoid bone [32].

For the ultimate fixation of the glenoid baseplate, cortical non-locking screws with
compression, locking screws, and compression screws can be used [17]. However, no dif-
ferences in implant stability were reported after comparing these different screw types [33].
Moreover, screw divergence has no impact on implant stability when compared to parallel
screw fixation [34]. Nevertheless, screw length correlates with improved glenoid baseplate
fixation, and a higher fixation strength can be achieved in the case of the implantation of
four screws compared to only two screws [35].

To overcome complications of glenoid baseplate loosening in the early designs of RTSA,
the center of rotation was consequently medialized to reduce the mechanical torque at the
glenoid component [2,36]. As a result, higher rates of scapular notching were observed [36].
Reviewing the literature, incidences of scapular notching following RTSA ranged from
4.6% to 96% [37–40]. A mechanical impingement between the humeral component and
the inferior scapular neck and the glenoid were discussed to be responsible for scapular
notching [3,6,41]. This mechanical impingement can lead to wear of the polyethylene
insert of the humeral component and subsequently cause osteolysis of the surrounding
bone [3,42]. However, the clinical significance of scapular notching is still a controversial
topic. Several studies have suggested a negative effect on clinical outcomes or an increasing
instability of the glenoid component [37,39,43]. In a recently published large outcome
study, Mollon et al. demonstrated that scapular notching does have a significant negative
influence on clinical outcomes, showing higher complication rates compared to patients
without diagnosed scapular notching [40].

To overcome this issue, a lateralization of the glenoid side relative to the medialized
center of rotation was expected to reduce postoperative scapular notching [43]. In a
biomechanical study, Gutiérrez et al. reported that the largest effect on both abduction and
adduction is related to a lateralization of the center of rotation [44]. In a multicenter study
analyzing the use of a lateralized glenosphere, improvements in external rotation paired
with relatively low rates of scapular notching of 13.3% as well as acromial stress fractures
of 6.5% were reported [45]. However, this might again cause excessive motion, leading to
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glenoid baseplate loosening, the migration of the glenosphere, and ultimately the failure of
RTSA [2,12].

Lateralization of the glenosphere by using a bony augmentation or a metal-augmented
baseplate represents a novel option to overcome complications such as scapular notching
and compromised external rotation [46,47]. The choice between an additional bone graft
and/or a metal-augmented baseplate depends on the implant design as well as the amount
of the remaining glenoid bone stock and concomitant wear patterns [48–50]. In 2011,
Boileau et al. first reported of a “bony increased-offset reverse shoulder arthroplasty” (BIO-
RSA), whereby lateralization was achieved by placing a 1 cm thick autologous bone graft
harvested from the resected humeral head between a specially designed baseplate and the
native glenoid (Figure 3) [51]. Until now, there has only been little evidence on the use of
BIO-RSA [51,52]. Of 42 patients, complete bony graft incorporation within the anatomical
glenoid bone stock was observed in 98%. Clinical results showed a gain in active mobility,
in active anterior elevation as well as in active external rotation. In 86%, the patient’s
internal rotation was sufficient enough to reach the back over the sacrum. Furthermore,
scapular notching rates were reduced using a BIO-RSA augmentation [51]. A recent study,
comparing standard RTSA without lateralization of the glenoid baseplate and the use of
a BIO-RSA augmentation, reported a significantly greater active external rotation and a
concomitant decrease in scapular notching by using a bony glenoid augmentation [53].
On the other hand, Collin et al. found no clinical of radiological differences comparing
bony-augmented glenoid baseplates with standardized glenoid baseplate implantation
without lateralization of the center of rotation [54]. Similar to the BIO-RSA, Katz et al.
proposed a lateralization of the center of rotation using a symmetric thick baseplate [55].
Lateralization using metal-augmented glenoid baseplates provides improvements in abduc-
tion, adduction, as well as in internal and external rotation with a concomitant reduction in
scapular notching [44]. Werner et al. reported a significant improvement in active internal
rotation using different thicknesses of glenoid baseplate components lateralizing from
6 mm to 8 mm [56].
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Figure 3. Standard anteroposterior radiographs of a right shoulder before and after implantation of a
reverse total shoulder arthroplasty: (A) Cuff arthropathy of the shoulder with increased posterior
glenoid wear. (B) Implantation of an uncemented MyShoulder (R) (Medacta, Castel San Pietro,
Switzerland). Additionally, a bony lateral increased-offset harvested from the humeral head was
implanted between the glenoid baseplate and the native glenoid (yellow dotted line).

Recent studies have pointed out the importance of the superior–inferior orientation
of glenoid erosion. Humeral head migration in rotator cuff arthropathy might influence
the pattern of glenoid wear [57,58]. In these cases, full-wedged or half-wedged augmented
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baseplates can be useful to compensate for severe glenoid bone loss [17]. Jones et al.
compared autologous glenoid bone grafting with the use of metal-augmented baseplates,
suggesting that both designs showed favorable results in addressing large defects and
improved clinical outcomes. However, metal-augmented baseplates may result in lower
rates of scapular notching with similarly lower complications such as graft resorption
and glenoid baseplate loosening [59–62]. Recently, Nabergoj et al. reported of satisfying
clinical and radiological outcomes in patients with RTSA and concomitant bony and
metallic augmentation for severe glenoid bone loss compared to patients with bony glenoid
augmentation only [63].

3.2. Glenosphere

The original glenosphere, according to Paul Grammont, was designed corresponding
to two-thirds of a sphere and thereby led to a medialization of the center of rotation [7].
Glenosphere design and implantation were constantly adapted regarding diameter, inferior,
and lateral offset, as well as inclination, in order to reduce complications such as scapular
notching or impaired range of motion [17].

To decrease polyethylene wear and concomitant osteolysis, several studies focused on
the inversion of mechanical bearings in RTSA, resulting in a glenosphere made of polyethy-
lene and an articulating humeral liner consisting of metal or ceramic [64–66]. Preclinical
data showed significantly less polyethylene bearing in the case of inverted bearing materi-
als for RTSA [64,65]. First clinical studies confirmed the safety of polyethylene glenospheres
without adverse effects such as polyethylene-induced osteolysis [65,66]. However, these
novel polyethylene glenospheres with the articulating metallic humeral liner presented in-
creased rates of scapular notching with pathognomonic sclerotic lines at the lateral glenoid
border, caused by the mechanical impingement of the metallic humeral liner [64,66].

To improve the range of motion after RTSA, larger diameter glenospheres became
more popular over the last years. In a cadaver study, a glenosphere with a diameter of
42 mm and a lateralized spacer of 7 mm or 10 mm showed the best range of motion for
internal and external rotation. However, active range of motion is dependent on muscle
strength and can therefore not be evaluated in a cadaver study [67]. Mollon et al. showed
that a glenosphere with a larger diameter of 42 mm significantly improved active forward
elevation and external rotation compared with a glenosphere with smaller diameter of
38 mm [68]. Even a larger glenosphere with a diameter up to 44 mm lead to a significant
increase in external rotation as well as an improved abduction and adduction strength [69].
In the case of revision surgery due to recurrent prosthetic joint dislocation, the implantation
of a larger glenosphere can increase deltoid tension and thereby achieve a higher joint
stability [70,71]. Even if a glenosphere with a larger diameter increases joint stability and
the postoperative range of motion, the clinical implications remain unclear, as a larger
glenosphere may not be feasible for the anatomy of smaller patients [72–74].

Lateralization of 6 mm to 8 mm was shown to positively improve active axial gleno-
humeral rotation and impingement-free range of motion [44,53,56,75]. On the other hand,
scapular notching can be reduced by shifting the cranio-caudal position of the glenosphere.
As an advantage, the range of motion can be improved by impeding the lateral offset [3,76].
Moreover, an inferior glenosphere overhang beyond the inferior glenoid border through the
eccentric placement of the glenosphere can lead to a greater movement in both adduction
and abduction [73,77]. De Wilde et al. evaluated the effect of an inferior glenosphere
overhang, showing a reduction in scapular notching with a concomitant increase in adduc-
tion [73,78]. Until now, the ideal amount of glenoid tilt remains unclear. However, several
studies have suggested that slight inferior tilt may be an advantage in providing a greater
impingement-free glenohumeral range of motion [44,74,79]. Negatively, inferior eccen-
tricity of the glenosphere can lead to an excessive distalization of the humerus, causing
stretching of the brachial plexus and especially the axillary nerve, with irreversible damage
and compromising the deltoid muscle function [55,80].
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Besides an inferior overhang, the glenosphere can be implanted with an inferior
tilt, leading to further distalization and medialization of the center of rotation with a
possible benefit for patients suffering from a rotator cuff tear arthropathy [81]. In a virtually
supported cadaver study, Li et al. reported the ideal glenosphere positioning in an inferior
translation, inferior tilt, and lateralization in all degrees of scaption [82]. Werner et al.
reported an ideal inferior tilt of 10◦ to be optimal concerning glenohumeral extension
and external rotation [75]. As a consequence, novel glenosphere designs are customized
with a built-in inferior inclination of 10◦, which facilitates implantation with an inferior
tilt without risking excessive reaming of the inferior glenoid and thereby compromising
implant stability.

Until now, positioning of the glenoid component remains a crucial step in RTSA, since
it affects the long-term survival and functional outcomes of prosthesis [41,83]. Inaccurate
positioning of the glenoid can lead to instability, loosening, and ultimately failure of
RTSA [84,85].

3.3. Humeral Component

In his first design, Paul Grammont proposed a long and straight cemented stem [7].
However, due to radiographic changes surrounding the stem, with high rates of bone
resorption around the tuberosities eventually leading to early humeral component loos-
ening and impaired range of motion because of increased stress shielding, new designs
of uncemented and proximally coated humeral components for press-fit fixation were
developed [86–88].

An important point in humeral component implantation was the decision on the use of
bone cement to ensure a sufficient fixation. In recent years, uncemented humeral fixation has
become more successful and has allowed the development of bone preserving short-stem
and stemless humeral prosthesis [89–91]. Novel curved-type humeral components with a
proximal hydroxyapatite-coated interface have only recently become more popular. The
shortening of the humeral component leads to a rather physiological distribution of shear
forces and mechanical torque [92]. Thereby, a greater amount of bone can be preserved, and
the occurrence of tuberosity fractures is less likely [6,93]. To preserve even higher amounts of
humeral bone stock and to reduce metaphyseal stress shielding, stemless designs for RTSA
were introduced in 2004 with either an impaction or a screw fixation. Stemless prostheses
depend on proximal bone stock and rely on subscapularis repair. Various studies describe
the positive effects of stemless implants including bone preservation, decreased blood loss,
less distal stress shielding, and less lateralization [90,91,94,95]. Moroder et al. reported short
to mid-term follow-up rates following stemless RTSA in a case-control study [89]. After a
mean follow up of 35-month stemless RTSA, 37 patients were compared to standard RTSA.
The authors observed satisfactory radiological and clinical outcomes including pain relief
and patient satisfaction in the stemless RTSA group. [89]. Levy et al. evaluated the clinical
and radiologic outcomes at two to seven years using a short metaphyseal RTSA, showing
satisfying short- to mid-term results with great pain relief and the restoration of a good active
range of motion [96]. However, there is only a limited number of trials for stemless implants
and long-term survivorships still need to be evaluated.

Limitations in internal and external rotation remain a challenge in modern RTSA [16].
Rotational movement in the shoulder results from a spin around its center. While the
native joint has its center in the midpoint of the humeral head, in RTSA, the humeral
component rotates around the glenosphere due to the medialization of the fulcrum [2,97].
Biomechanical investigations showed that the rotational movement is influenced by the
torsion placement of the humeral component [2,97,98]. While internal rotation is increased
by a lower retrotorsion, external rotation is facilitated by a higher retrotorsion [98]. Until
now, the ideal humeral component torsion is still a matter of debate [2,3,97–99]. While
Stephenson et al. proposed an overall advantage in range of motion with a retrotorsion
of 20◦ to 40◦ [98], Favre et al. recommended an implantation at neutral rotation or even
anteversion in order to improve intrinsic stability [100]. A recent study by Moroder et al.
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proposed the integration of patient posture for individualized retrotorsion angles [101].
The authors concluded that, in the case of an advanced kyphosis, as well as a protracted
and internally rotated scapula, the use of an increased angle of humeral component torsion
should be considered [101].

3.4. Polyethylene Humeral Inlay

The original polyethylene humeral inlay from Paul Grammont was designed at a neck-
shaft-angle (NSA) of 155◦ with a depth of 8 mm [7]. Since then, several changes and adaptation
have been performed on the polyethylene cup. The contact area between the glenosphere and
the polyethylene inlay is one of the key factors for stability in RTSA. Several inlays ranging
from high-mobility to constrained or retentive versions are available [44,73,102].

The NSA plays a crucial role in implant stability and has a major influence on clinical
outcomes. The NSA is measured by a line along the central intramedullary axis of the
humeral shaft and a tangent passing through the anatomic neck-head junction [103,104].
According to Gutiérrez et al., the NSA has a major impact on inferior scapular notching
and adduction deficiencies. A smaller NSA resulting in a varus positioning significantly
improves the adduction capacity [44]. Although the risk of scapular notching can be
reduced using a polyethylene inlay with a smaller NSA, a major improvement was observed
by using a shorter humeral stem with a varying NSA. Lädermann et al. reported a greater
range of motion in adduction, extension, and external rotation by using a shorter and
curved stem with different NSAs ranging between 135◦ and 155◦, especially in case of
varus NSAs [93]. A systematic review including 38 trials with 2222 shoulders found
significantly higher rates of scapular notching in RTSA, with an NSA of 155◦ compared
to an NSA of 135◦. However, upon comparing the risk of prosthetic joint dislocation, no
differences were observed comparing different NSAs [105].

In the case of prosthetic joint instability, the use of a more constrained or retentive
inlay is suggested [106,107]. While retentive inlays contribute to a higher stability, several
studies have showed that the risk of increased polyethylene wear and aseptic loosening
is increased due to higher shear forces on the articulating partners [106,107]. Moreover,
Mueller et al. reported a significantly greater incidence of polyethylene wear and rim
damage of the humeral components in the case of scapular notching [108]. By using a
two-dimensional model of the scapula showing a change in cup depth from 8 mm to 5 mm,
range of motion increased by 12◦ in abduction [73]. Similarly, Elwell et al. reported of a
significant, however probably clinically irrelevant, increase in the overall range of motion
by reducing the polyethylene cup depth from 8.1 mm to 6 mm [109]. Lädermann et al.
suggested that a polyethylene with a notch between 3 and 9 o’clock may have a positive
effect on postoperative range of motion as well as a reduction in scapular notching [110].
Even if prosthetic joint stabilization can be achieved by increasing the thickness of the inlay,
overstuffing the articulation may produce unfavorable effects on the deltoid muscle and
joint loading [111].

In order to implant the polyethylene cup within the metaphyseal component of the
humeral shaft, reaming of the metaphyseal area is mandatory. However, this might cause
excessive bone loss, ultimately leading to resorption of the tuberosities. To overcome this
issue, another design change was made to RTSA, leading to novel onlay polyethylene liners
being placed just above the metaphysis at the level of the humeral head osteotomy. This
onlay design results in a lateralization of the humerus by mechanical shifting of the humeral
stem from the glenosphere, which might lead to an overstuffing of the joint, eventually
causing impaired range of motion or failure of RTSA due to excessive shear forces and
mechanical torque [17,112,113]. On the other hand, there are several advantages to an onlay
design such as a larger deltoid moment arm for improved deltoid efficiency and better
tensioning of the rotator cuff muscles [17,112,114].
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4. Computer Navigation and Patient-Specific Instrumentation

Since adequate and stable fixation of prosthetic components can be challenging, es-
pecially in massive osteoarthritis and concomitant bone loss, surgical navigation and
patient-specific instrument (PSI) techniques were first introduced in the mid-to-late 2000s
and later adapted in 2014 by Ianotti et al. [115]. PSI and computer navigation were de-
veloped to improve glenoid positioning, especially in technically challenging cases with
complex and variable anatomy [116,117]. Sadoghi et al. performed a meta-analysis assess-
ing data for glenoid version for 117 navigated shoulder replacements and 114 standard
prostheses. In navigated shoulders, the error for implant version and inclination was
significantly reduced [118]. Over the past years, technology has progressed, and patient-
specific guides based on three-dimensional printed models of the patient’s anatomy and
the matching cutting blocks are becoming gradually commercially available. The accuracy
of preoperative planning facilitates the prediction of the correct implants and may optimize
supply chain logistics for both hospitals and implant companies [119].

Several software tools are available using standard preoperative computed tomog-
raphy scans of the shoulder to define the optimal positioning of the implants [116,120].
Current software use bony anatomy to estimate the postoperative range of motion and pre-
dict early impingement. However, scapulothoracic orientation has not yet been considered.
In a recent study, Moroder et al. [121] investigated the influence of patients’ posture on the
range of motion following RTSA implantation in a modelling study. They used a modified
preoperative planning software with a coordinate system to include scapular orientation in
relation to the thorax.

Ultimately, patient-specific drill guides became available for the surgical procedure [122].
Until now, only controversial data on the use of PSI has been published. Lau et al. suggested
that the accuracy of PSI-guided glenoid position is not as favorable [123]. On the other hand,
Dallalana et al. reported PSI to be accurate and highly reliable in optimal orientation of
the glenoid [124]. A recently performed meta-analysis reported that computer navigation
and PSI lead to better glenoid positioning outcomes. However, due to the heterogeneity of
results, it remains unclear whether these improvements are beneficial for patients’ clinical
outcome [125].

One of the most common failures following RTSA is the malpositioning of the glenoid
component, which is associated with increased humeral instability, leading to inferior
outcomes and ultimately to component loosening [36,83,126].

A new approach to improve RTSA is the use of mixed reality-guided implantation.
Augmented reality, a technique that allows the superimposing of a digital image on top
of the visual field, may be a key tool for the future [116]. In 2018, Gregory et al. first
described the technology of a mixed reality headset enabling the hand-user the interaction
by oral command or simple gesture. During the surgery, data of the operative technique
can be transmitted into the operating headset in real time without prolonging the surgical
time [127]. However, larger clinical series on accuracy and possible complications of this
novel technique are still missing.

Despite satisfying clinical results [124,125], the use of PSI still faces challenges such as
logistics due to preoperative scanning of the shoulder and manufacturing of custom-made
cutting blocks and implants paired with higher costs compared to conventional RTSA.

5. Conclusions

RTSA has revolutionized the management of many shoulder pathologies over the past
years. Constant changes in prosthetic designs were made to overcome complications such
as implant loosening, scapular notching, or limited range of motion. By the medialization
of the glenohumeral center of rotation, as originally suggested by Paul Grammont in his
first design of RTSA, deltoid abduction effectiveness could be increased by up to 30%
compared to native anatomy. On the other hand, lateralization of the center of rotation
using an autologous bone graft or a metal-augmented baseplate is associated with lower
rates of scapular notching and improved shoulder rotation capacity. The use of novel PSI
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techniques and computer navigation may be a viable tool with which to improve accurate
component positioning, leading to a patient-oriented, tailor-made RTSA.
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